P9631 [ICPC 2020 Nanjing R] Just Another Game of Stones Solution

news/2025/2/24 19:06:13

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),有 m m m 个操作分两种:

  • chmax ⁡ ( l , r , k ) \operatorname{chmax}(l,r,k) chmax(l,r,k):对每个 i ∈ [ l , r ] i \in [l,r] i[l,r] 执行 a i ← max ⁡ ( a i , k ) a_i\gets\max(a_i,k) aimax(ai,k).
  • query ⁡ ( l , r , k ) \operatorname{query}(l,r,k) query(l,r,k):用石堆 a l ⋯ r a_{l\cdots r} alr 和一堆 k k k 个石子玩 Nim,求先手第一次取完石子后,后手必败的操作方案数.

Limitations

1 ≤ n , m ≤ 2 × 1 0 5 1 \le n,m \le 2\times 10^5 1n,m2×105
0 ≤ a i , k < 2 30 0 \le a_i,k < 2^{30} 0ai,k<230
1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn
3 s , 256 MB 3\text{s},256\text{MB} 3s,256MB

Solution

看到 chmax ⁡ \operatorname{chmax} chmax 先来一个吉司机.
然后看查询,显然要维护 xor ⁡ \operatorname{xor} xor 和用来判断先手是否必胜.
考虑如何求方案数,将 k k k 算入,设 s s s 为这局游戏的 SG 值,若先手必胜则策略显然为 a i ← a i xor ⁡ s a_i \gets a_i \operatorname{xor} s aiaixors,所以把问题转化成求 ∑ [ a i > ( a i xor ⁡ s ) ] \sum [a_i > (a_i \operatorname{xor} s)] [ai>(aixors)].
考虑异或性质,发现只需要维护某位为 1 1 1 的数的数量,查询时就找到 s s s 最高位,统计这位为 1 1 1 的即可.
需要的信息都可以在吉司机上维护,于是就做完了.
注意 ∞ \infty 要开够.

Code

4.25 KB , 578 ms , 114.35 MB    (in   total,   C++   20   with   O2) 4.25\text{KB},578\text{ms},114.35\text{MB}\;\texttt{(in total, C++ 20 with O2)} 4.25KB,578ms,114.35MB(in total, C++ 20 with O2)

// Problem: P9631 [ICPC2020 Nanjing R] Just Another Game of Stones
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P9631
// Memory Limit: 256 MB
// Time Limit: 3000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

const int inf = 2147483647;
struct Node {
    int l, r;
    int min, sec, cnt, tag, sum;
    array<int, 30> bits;
};
using Tree = vector<Node>;
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }

inline void pushup(Tree& tr, int u) {
    tr[u].sum = tr[ls(u)].sum ^ tr[rs(u)].sum;
    if (tr[ls(u)].min == tr[rs(u)].min) {
        tr[u].min = tr[ls(u)].min;
        tr[u].cnt = tr[ls(u)].cnt + tr[rs(u)].cnt;
        tr[u].sec = min(tr[ls(u)].sec, tr[rs(u)].sec);
    }
    else if (tr[ls(u)].min < tr[rs(u)].min) {
        tr[u].min = tr[ls(u)].min;
        tr[u].cnt = tr[ls(u)].cnt;
    	tr[u].sec = min(tr[ls(u)].sec, tr[rs(u)].min);
    }
    else {
        tr[u].min = tr[rs(u)].min;
        tr[u].cnt = tr[rs(u)].cnt;
        tr[u].sec = min(tr[ls(u)].min, tr[rs(u)].sec);
    }
    for (int i = 0; i < 30; i++) {
        tr[u].bits[i] = tr[ls(u)].bits[i] + tr[rs(u)].bits[i];
    }
}

inline void build(Tree& tr, int u, int l, int r, const vector<int>& A) {
    tr[u].l = l;
    tr[u].r = r;
    tr[u].tag = -1;
    if (l == r) {
        tr[u].min = tr[u].sum = A[l];
        tr[u].sec = inf;
        tr[u].cnt = 1;
        for (int i = 0; i < 30; i++) tr[u].bits[i] = (A[l] >> i & 1);
        return;
    }
    
    const int mid = (l + r) >> 1;
    build(tr, ls(u), l, mid, A);
    build(tr, rs(u), mid + 1, r, A);
    pushup(tr, u);
}

inline void apply(Tree& tr, int u, int v) {
    if (tr[u].min >= v) return;
    tr[u].sum ^= (tr[u].cnt & 1) * (tr[u].min ^ v);
    for (int i = 0; i < 30; i++)
        tr[u].bits[i] += ((v >> i & 1) - (tr[u].min >> i & 1)) * tr[u].cnt;
    tr[u].min = tr[u].tag = v;
}

inline void pushdown(Tree& tr, int u) {
    if (tr[u].tag != -1) {
        apply(tr, ls(u), tr[u].tag);
        apply(tr, rs(u), tr[u].tag);
        tr[u].tag = -1;
    }
}

inline void update(Tree& tr, int u, int l, int r, int v) {
    if (tr[u].min >= v) return;
    if (l <= tr[u].l && tr[u].r <= r && tr[u].sec > v) return apply(tr, u, v);
    const int mid = (tr[u].l + tr[u].r) >> 1;
    pushdown(tr, u);
    if (l <= mid) update(tr, ls(u), l, r, v);
    if (r > mid) update(tr, rs(u), l, r, v);
    pushup(tr, u);
}

inline int qsum(Tree& tr, int u, int l, int r) {
    if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
    const int mid = (tr[u].l + tr[u].r) >> 1;
    pushdown(tr, u);
    if (r <= mid) return qsum(tr, ls(u), l, r);
    else if (l > mid) return qsum(tr, rs(u), l, r);
    else return qsum(tr, ls(u), l, r) ^ qsum(tr, rs(u), l, r);
}

inline int qbit(Tree& tr, int u, int l, int r, int k) {
    if (l <= tr[u].l && tr[u].r <= r) return tr[u].bits[k];
    const int mid = (tr[u].l + tr[u].r) >> 1;
    pushdown(tr, u);
    if (r <= mid) return qbit(tr, ls(u), l, r, k);
    else if (l > mid) return qbit(tr, rs(u), l, r, k);
    else return qbit(tr, ls(u), l, r, k) + qbit(tr, rs(u), l, r, k);
}

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n, m;
	scanf("%d %d", &n, &m);
	
	vector<int> a(n);
	for (int i = 0; i < n; i++) scanf("%d", &a[i]);
	Tree tr(n << 2);
	build(tr, 0, 0, n - 1, a);
	
	auto get = [&](int l, int r, int x) {
	    int sg = qsum(tr, 0, l, r) ^ x, bit = -1;
	    for (int i = 0; i < 30; i++)
	        if (sg >> i & 1) bit = i;
	    if (bit == -1) return 0;
	    return qbit(tr, 0, l, r, bit) + (x >> bit & 1);
	};
	
	for (int i = 0, op, l, r, v; i < m; i++) {
	    scanf("%d %d %d %d", &op, &l, &r, &v);
	    l--, r--;
	    if (op == 1) update(tr, 0, l, r, v);
	    else printf("%d\n", get(l, r, v));
	}
	
	return 0;
}

http://www.niftyadmin.cn/n/5864729.html

相关文章

【Nacos】从零开始启动Nacos服务(windows/linux)

文章目录 前言前置条件官方网址一、Nacos下载1.1 选择Nacos版本1.2 下载 二、解压2.1 解压到某个文件夹 三、 启动3.1 方式一&#xff1a;直接使用命令启动3.1.1 进入bin文件夹3.1.2 进入命令行工具3.1.3 执行命令 3.2 方式二&#xff1a;修改配置文件后启动3.2.1 修改启动脚本…

QEMU 的详细介绍、安装指南、配置说明

QEMU&#xff1a;开源虚拟化技术的万能引擎 一、QEMU 简介 QEMU 是一款开源的 硬件虚拟化引擎&#xff0c;支持 x86、ARM、MIPS 等多种架构的模拟。它可以运行完整的操作系统&#xff08;如 Linux、Windows、macOS&#xff09;或单个程序&#xff0c;无需依赖目标硬件。其核心…

《操作系统 - 清华大学》 8 -6:进程管理:进程状态变化模型

进程状态及其转换全解析 在操作系统中&#xff0c;进程有着特定的生命周期和多种状态变化。不考虑进程结束时&#xff0c;进程主要有三个基本状态。 运行态&#xff1a;即进程正在占用CPU执行任务。总结&#xff1a;运行态表示进程当前正在使用CPU。就绪状态&#xff1a;进程…

Windows 下 Visual Studio Code 常用快捷键指南

Windows 下 Visual Studio Code 常用快捷键指南 一、基础操作 命令与文件管理 Ctrl Shift P&#xff1a;打开命令面板&#xff08;支持所有操作&#xff0c;如安装插件、切换主题&#xff09;Ctrl P&#xff1a;快速搜索并打开文件Ctrl N&#xff1a;新建文件Ctrl W&am…

基于 DeepSeek + Gemeni 打造 AI+前端的多人聊天室

开源项目 botgroup.chat 介绍 AI 多人聊天室&#xff1a; 一个基于 React 和 Cloudflare Pages(免费一键部署) 的多人 AI 聊天应用&#xff0c;支持多个 AI 角色同时参与对话&#xff0c;提供类似群聊的交互体验。体验地址&#xff1a;https://botgroup.chat 开源仓库&#x…

[ TypeScript ] “undefined extends xxx“ 总是为 true 的 bug

版本号 "typescript": "^5.7.3", "unplugin": "^2.2.0",说明 在使用 unplugin 时 , 我定义插件的参数是 必填的, 使用时却是一个可空参数, 不传参也不会报错, (options?: UserOptions) > Return &#x1f632;&#x1f632;&…

Grouped-Query Attention(GQA)详解: Pytorch实现

Grouped-Query Attention&#xff08;GQA&#xff09;详解 Grouped-Query Attention&#xff08;GQA&#xff09; 是 Multi-Query Attention&#xff08;MQA&#xff09; 的改进版&#xff0c;它通过在 多个查询头&#xff08;Query Heads&#xff09;之间共享 Key 和 Value&am…

常见的“锁”有哪些?

悲观锁 悲观锁认为在并发环境中&#xff0c;数据随时可能被其他线程修改&#xff0c;因此在访问数据之前会先加锁&#xff0c;以防止其他线程对数据进行修改。常见的悲观锁实现有&#xff1a; 1.互斥锁 原理&#xff1a;互斥锁是一种最基本的锁类型&#xff0c;同一时间只允…